在数字化时代背景下,电商平台不断拓展其触达用户的边界,而“每日必抢小程序”正是这一趋势下的产物。本文深度剖析了这款小程序如何在支付宝、夸克等非淘宝App端为用户提供近似淘宝App的购物体验,通过整合营销、搜索、交易等核心电商能力,实现在多平台的无缝衔接。
在当下的直播业务中,实时音视频交互已经变成主播与主播,主播与用户之间的主要交流模式。 为了满足用户间互动的需求,B站提供了多种实时互动类产品,比如:语音聊天室,连麦连线,视频PK等功能。 但长期以来因为业务与技术快速发展,团队组织不停变革,系统技术债务不断积累等原因,导致不同互动业务间普遍存在能力重复建设,数据孤立等问题。 同时现有的技术架构已经无法满足我们的需求,作为互动业务负责团队,我们希望通过对互动中心进行平台化架构升级,来融合各种互动业务,降低系统复杂度同时提升系统性能。 以此提高交付效率来更好适应需求变化。
数据湖计算部分,Spark 作为 ETL Batch 任务的主要批处理引擎,Flink 作为准实时计算的流处理引擎,StarRocks 和 Presto 作为即席查询的 OLAP 引擎。数据湖管理层以 Iceberg 为核心,同时开放了一些简单的 API,支持用户通过 SDK 的方式去调用。在 Iceberg 之上构建了一套 Auto Optimize Service 服务,帮助用户在使用 Iceberg 的过程中实现查询性能的提升和存储成本的降低。数据湖底层存储基于 HDFS 和 COS,COS 是腾讯云的云对象存储,可以满足云上用户的大规模结构化/非结构化存储需求,在上层计算框架和底层存储系统之间,也会引入 Alluxio 构建了一个统一的存储 Cache 层,进行数据缓存提速。本次分享的重点主要是围绕智能优化服务(Auto Optimize Service)展开。
本文介绍了LangChain框架,它能够将大型语言模型与其他计算或知识来源相结合,从而实现功能更加强大的应用。接着,对LangChain的关键概念进行了详细说明,并基于该框架进行了一些案例尝试,旨在帮助读者更轻松地理解LangChain的工作原理。