作为头戴的追踪配件,VR手柄可以通过HMD(头戴显示设备)的inside-out光学追踪定位原理,计算出手柄的空间运动轨迹,同时结合6轴传感器实现6DoF空间定位。与此同时,结合手柄控制器的物理按键、马达反馈、摇杆等,用户还能获得逼真、细腻的触觉反馈,进一步增强虚拟现实人机交互的能力以及沉浸感,这也是目前无手柄方案所难以实现的。 目前主流VR手柄的追踪技术方案,包括光学追踪、自追踪和电磁追踪方案。
一个接口可能需要调用 N 个其他服务的接口,这在项目开发中还是挺常见的。举个例子:用户请求获取订单信息,可能需要调用用户信息、商品详情、物流信息、商品推荐等接口,最后再汇总数据统一返回。 如果是串行(按顺序依次执行每个任务)执行的话,接口的响应速度会非常慢。考虑到这些接口之间有大部分都是 无前后顺序关联 的,可以 并行执行 ,就比如说调用获取商品详情的时候,可以同时调用获取物流信息。通过并行执行多个任务的方式,接口的响应速度会得到大幅优化。
向量可以对物理世界的人/物/场景所产生各种非结构化数据(如语音、图片、视频,语言文字、行为等)进行抽象,如同数学空间中的坐标,标识着各个实体和实体关系。非结构化数据变成向量的过程称为向量化(Embedding)。向量检索就是对非结构化数据生成的向量进行检索,寻找相同或相似的向量,从而找到相同或相似的非结构化数据。
在本篇文章中,作者介绍了 Rust 是什么,它的历史以及 Rust 是如何备受开发者和行业的青睐。希望本篇文章能帮助读者对 Rust 这门语言有一个大概的了解。
马太效应,是社会学和经济学常用理论之一,通常指强者越强、弱者越弱的两极分化现象。如今,这股效应也在国内企业级数据洞察市场蔓延: 一方面,部分企业尚未意识到数据对于自身发展的价值,或者缺乏高效便捷的数智化产品/工具将庞杂数据变得“可看”“可用”,导致难以及时把握市场行情、做出科学决策,最终发展受限; 另一方面,深谙数据驱动的企业,则积极把握数字化时代飞速发展的红利,持续加码企业数智能力,将数据消费贯穿业务推进、管理决策、规划调整等多场景,保障业务健康、快速成长。 如何尽量缩小马太效应影响,帮助更多企业实现数据洞察领域的数字化升级,享受普惠式数据消费,正在成为现阶段的重要课题。