Model Context Protocol(MCP)作为 AI 应用生态系统中的关键协议,为大语言模型与外部工具、数据源的集成提供了标准化接口。旨在为大型语言模型(LLM)与外部数据源、工具之间建立标准化的双向通信链路。通过该协议,开发者能够以统一的格式连接多样化的数据源,从而显著降低了智能体(Agent)的开发复杂度,加速了其在各行业的应用落地。 本期我们将为大家介绍 MCP 在安全领域的实践,教你打造一款专属的AI安全助手!(文末扫码加入开发者群)
虽然之前对于MCP有过一次调研,但是最近上手在做一些MCP的工程实践的过程中,确实发现还是有很多误解。我翻阅了许多技术文章,以及协同沟通的时候发现,往往大家天然的将MCP简单地视为一种“更高级”或“可跨模型”的Function Calling。这种认知偏差,不仅掩盖了MCP作为一套软件工程协议的真正价值,更可能导致在技术选型和系统架构设计上的严重误判。当一个集成了20个OpenAPI工具的MCP应用,其单次请求的Token消耗轻易突破60K,导致成本和延迟飙升时;当生产环境中的模型因为一个微小的Prompt变动而出现大面积的工具调用格式错误时,我们必须扪心自问:我们是否真的理解了MCP的本质?于是提笔,希望将本文作为一篇写给AI工程师的硬核“辟谣”指南,旨在彻底澄清这一混淆。并提出并严谨论证一个核心观点:MCP本质上是一套模型无关的、用于构建可互操作AI应用的工程协议,其核心组件Server/Client与LLM的智能决策并无直接关联。
你有没有过这样的体验?在高速上对着导航喊“小度小度”,它就神奇地回应道“来了”;在地下车库问“最近的充电桩”,屏幕立刻跳出相关的充电桩指引;甚至对车载语音助手说“有点冷”,空调的温度就会悄悄调高。这些看似“读心术”的交互背后,藏着一个能听懂人话、能感知环境、能精准应答的“数字领航员”。当你说“查找故宫附近的粤菜馆”时,系统不仅要从3亿多条 POI 数据中精准定位,还要理解“附近”是500米还是3公里;当你追问“有包厢吗”,它甚至能调用餐厅实时预订系统。这些看似简单的对话,需要跨越语音识别、语义理解、内容获取、答案生成等多重技术关卡。
KMP(Kotlin multiplatform)是 Kotlin 语言的一项重要特性,允许将 kotlin 代码运行在不同平台上,通过『一码多端』的方式来节省成本。 而与诸如 Java / React 这类跨端方案不同,KMP 没有采用所谓的虚拟机的思路,而是选择直接将 kotlin 源码编译成目标平台代码运行的方案。
你在写prompt时候,是不是总觉得大模型它不听话。要么答非所问、要么一堆废话。扒开思考过程仔细阅读时而觉得它聪明绝顶,时而又觉得它愚蠢至极。明明已经对了怎么又推理到错的地方去了,明明在提示词中提醒过了不要这么思考它怎么就瞎想了。这也许就是每一个Prompt Engineer的困扰。怎么能让模型按照要求去思考。长提示词到底应该怎么写,有没有方法可以一次命中,找到那个终极的提示词。 答案是否定的,一篇成功的长提示词总是要经历初始版本、调优、测试、再调优。不过这个过程中有规律可循,有方法可套。 以下就是被提示词反复捶打,经历无数痛苦经历后总结的一套提示词写作方案,保你可以得到满意的长提示词,让模型听话。