程序员工作的终极意义,就是干掉复杂度,用一套通用的方法解决大部分问题。在大模型时代,这个通用的方法就是——Prompt 工程。作为用好大模型最重要的武器,Prompt 的好坏对模型效果有着决定性的影响。 然而,网络上大量相关文章多是罗列“Prompt 工程” 中的若干技巧,少有体系化的总结,让人看完依然不知道该如何入手。本文希望结合腾讯工程师在 “Prompt 工程” 中的实践经验,更加体系化地对 “Prompt 工程” 进行梳理,希望可以一步步地帮助大家用好大模型,人人都是 Prompt 工程师。
视频业务作为B站内容生态的心脏,承载了海量的视频内容和用户互动。它不仅是用户获取信息、享受娱乐的窗口,更是UP主展示创意、分享知识的舞台。在设计和实现视频系统时,我们致力于平衡用户体验、内容分发的效率,同时确保平台的稳定性和可扩展性。 在这个过程中,稿件生产扮演着至关重要的角色。我们通过提供强大的视频上传、编辑和管理工具,满足创作者的需求,让他们能够轻松地制作和分享内容。同时,我们实施严格的内容审查和版权管理措施,以保障社区生态的健康发展。我们向创作者提供更好的服务,向B站内容生态供给更多的内容。
本文主要分享我们近期在Embedding模型训练上的工作「Conan-Embedding」。目前,Conan-Embedding已在最全面、最大规模的中文语义向量评测榜单C-MTEB上达到SOTA,超越了阿里、百川、OpenAI等众多Embedding模型。
今年以来,商家营销工具业务需求井喷,需求数量多且耗时都比较长,技术侧面临很大的压力。因此这篇文章主要讨论营销工具前端要如何应对这样大规模的业务需求。
在我们的项目中,每个版本发布之后,我们会创建一个opt分支,用于修复线上崩溃以及业务逻辑BUG。 开发过程中,一个APP可能同时并行开发多个需求,每个需求上线的预期时间可能会有不同。但是这个opt分支我们会保证在下个版本一定上线,QA同学也会在每个版本发布前预留测试opt分支的时间。