随着产业化的深入,商业搜索场景需要更深入理解业务,与业务结合。本文将介绍商业搜索场景中,围绕用户体验和商业收入提升,所做的技术迭代和升级。第一部分重点介绍业务场景和业务中的问题;第二部分介绍知识图谱的挖掘和应用;第三部分介绍大模型如何在知识图谱场景中进行应用和落地。
携程酒店前端存在大量监控,但对于监控问题的排查成本,随着量级的增加而变得不可控。因此引入了智能预警归因系统,以数据池统一数据结构及标准;以预警规则池保证预警的准确性、低噪音;以算法模型进行根因分析,直接给出归因结果,从而提高整体排障效率。
在一次Java Web应用程序的优化升级过程中,从Tomcat 7.0.109版本升级至8.5.93版本后,尽管在预发布环境中验证无误,但在灰度环境中却发现了一个令人困惑的问题:新日志记录神秘“失踪”。本文深入探讨了这一问题的排查与解决过程,揭示了由Tomcat升级引发的不寻常日志记录故障背后的技术细节。
近来,随着大型语言模型的发展,视觉语言大型模型的能力也在逐步增强,GPT-4[1]、Gemini Pro 1.5[2]和Claude 3[3]等著名的闭源模型成功将 LLM 扩展到视觉语言模型领域。LLaVA[4],InternVL[5]等开源模型也在迅速发展。目前,视觉语言模型领域存在一些关键问题亟待解决:1)闭源模型很少公开关于其架构的详细信息。相比之下,开源模型虽公开了其训练策略,但这些策略的详细消融并没有完全披露。2)在目前的开源工作中,对于预训练阶段,大多都是凭经验添加不同来源的数据集,这使得预训练过程难以得到深入的探索。3)在微调阶段,绝大多数工作关注的重点通常是添加和消融更多的数据集,这样性能会较快触及瓶颈。我们针对以上几点给出了我们的方案,并进行了清晰充分的实验论证。
从23年开始,我们团队开始前端错误监控方向的开发。经历了一些列的迭代和发展,从监控SDK、上报、数据治理、看板集成、APM自研可视化初步完成了一条完整且适合B站前端监控。 截止目前(2024.08.01),前端监控在B站85%以上的业务线,1700+项目中运行。今年初APM平台的落地接入了210+的项目,5月新推出的一键告警配置功能也达到了300+。