苹果电动汽车项目,通常被称为“泰坦计划”(Project Titan),于2014年启动,投入数十亿美金,"泰坦"(Titan)来源于希腊神话,与创造力和巨大神力相联系。这个被苹果内部给予厚望的“神之项目”,即将被叫停,而团队将部分转岗至生成式人工智能项目。 “神力”被转移至生成式AI,这已经成为苹果日益重要的战略重心。转岗的团队即向John Giannandrea汇报,他在2018年加入苹果公司,担任机器学习和人工智能战略高级副总裁。他在苹果的职责包括领导公司的AI团队,推动Siri和其他AI项目的改进和发展。 而在2023年的9月8日,外媒The Information首次曝光了苹果公司AI大模型开发团队的核心成员,其中就包括John Giannandrea,还有参与创造Java的Arthur Van Hoff、神经网络领域专家Ruoming Pang,强强联手助力苹果AI大模型发展。 以上这些人员的调整及变动,外界都是通过媒体的爆料而得知。苹果这家引人注目的公司,在众多美国科技大厂争相高调宣布AI战略的时候,显得过分沉默,没有在任何官方发布会、甚至官方途径透露过他们的AI
不知不知觉,已经从事测试开发这个行当10来年了,从上大学到参加工作,从南方到北方再回南方,辗转了大半个中国,如今算算进公司已经开启了第五个年头,今年就要五年陈了。 兜兜转转这十多年间,虽然一直都在质量领域,但其实也经历过不少的角色转换,这几年学习了很多,也收获了很多,希望借此机会跟大家分享自己这些年在质量域和职场上自己的一点思考和总结,写在现在,也写给未来的自己,记录今天的所思所想。
2023 年 12 月 28 日,为期两天的顶级技术盛会 QCon 全球软件开发大会暨十五周年大会在上海顺利开幕。本次大会以“启航·AIGC 软件工程变革”为主题,策划了 LLM 时代的性能优化、加速声称是 AI 落地的最佳实践、GenAI 和通用大模型应用探索等 20 余个演讲专题。 我分享点 Java 相关内容。在得物,使用 Java 的同事们占据了相当大的比例,他们是我们业务线的中坚力量。我希望今天所分享的内容能对大家有所帮助,助力于公司价值的创造。 参加 QCon 大会时有幸遇见 Azul 技术总监。他曾任职甲骨文 OFM 中间件团队,担任 CGBU 技术负责人,在 Java 界非常有分量。与大佬针对 ZingJDK 以及 JVM 进行了深入交流后,今天把交流所得分享给大家。
大家好,最近 TypeScript 发布了 5.4 Beta 版本,其中包含了一些值得关注的新特性以及一些 Break Change,我们一起来看下吧:
SOLID 指导我们如何写出高质量代码,而组件设计原则(Component Priciples)指导我们如何合理地组织代码,实现代码目录的高内聚和低耦合。 组件(Component)这个词现在用得比较泛滥,组件设计原则的“组件”的定义来自《 Clean Architecture》,代表是一组业务相关的文件集合,在 Android 工程中,一个组件可以等价理解为一个模块( Gradle Module)。所以本文讨论的就是如何更好的组织这些模块,让 Android 工程架构的模块化更合理
信息流个性化推荐场景中依赖爬虫抓取的海量新闻库,这些新闻中不乏互相抄袭的新闻,这些内容相似的文章,会造成内容的同质化并加重数据库的存储负担,更糟糕的是降低了信息流内容的体验。所以需要一种准确高效的文本去重算法。而最朴素的做法就是将所有文本进行两两比较,简单易理解,最符合人类的直觉,这种做法对于少量文本来说,实现起来很方便,但是对于海量文本来说是行不通的,所以应在尽可能保证准确性的同时,降低算法的时间复杂度。事实上,传统比较两个文本相似性的方法,大多是将文本分词之后,转化为特征向量距离的度量,比如常见的欧氏距离、海明距离或者余弦角度等等。下面以余弦相似度和simhash算法为例做简单介绍。
性能优化是降本增效路上必不可少的手段之一,在合适的时机采用合理的手段进行性能优化,一方面可以实现系统性能提升的目标,另一方面也可以借机对腐化的代码进行清理。在程序员的面试环节中,性能优化的问题也几乎是必考题。 然而性能优化并非一锤子买卖,需要一直监控,一直优化。过早的优化、过度的优化,以及优化 ROI 都是程序员们在工作中需要评估的关键点。本文作者总结了日常工作中常见的性能优化问题,围绕数据结构展开推荐了常见的几种性能优化方案——既有提升 3 倍性能的优化技巧,也有扛住26 亿/s API 调用量的健壮方案。文末还推荐了三款好用的性能测试工具,值得点赞收藏!