推荐系统在当今的互联网应用中扮演着至关重要的角色,它极大地丰富了用户体验,帮助用户在海量信息中发现和探索他们可能感兴趣的内容。然而,随着数据量的激增和用户需求的日益多样化,传统的离线推荐系统已经难以满足用户对于实时性和个性化推荐的需求。在这种背景下,实时推荐系统应运而生,它能够迅速响应用户的行为变化,并提供更为精准的个性化推荐。 为了实现这一目标,高效的实时推荐系统必须能够持续更新用户和物品的特征,以实时捕捉和反映它们的最新行为和兴趣变化。在这个过程中,实时特征的准确性和稳定性变得至关重要,它们直接影响到推荐系统在生产环境中的效果表现。
在业务快速扩张的年代,vivo 内部的很多业务为了可以快速上线,给现网功能提供支撑,在 KV 类型的选型下许多场景都选用了轻量快速的 Redis 集群。但是随着业务的不断发展与稳定,当数据量级达到一定程度的时候,数据性质开始发生变化:有的历史 Redis 集群热度下沉,但是依然基于 Redis 集群作为载体进行 KV 存储。这种类型的数据不仅量大,而且访问频次不高。 业务的发展阶段变化也会对数据载体的诉求也会相应发生变化。对于大规模而热度不算高的 KV 存储场景而言,业务对降低成本的诉求日益增多。为了满足这种类型的业务诉求,vivo 基于 TiKV 自研一套 KV 系统供业务使用。为了让业务可以更加便捷的接入,我们基于计算存储分离架构进行设计,把 TiKV 作为存储层开发 Redis 协议兼容的 KV 存储组件。
作者有幸参与设计和开发了涉及数十亿量级的图片素材调度、处理和索引使用的平台-产业AI素材库,在平台的建设落地过程中,踩了许多坑,也有了一些工程落地上的实践总结,希望分享给大家。
这两年在日常工作中,接触了不少刚进腾讯的新人开发,发现了大部分新人都存在的一些共性问题。由于工作繁忙,往往很难出现一个特别合适的机会,系统地跟他们分享我的经验和观点。最近刚好有接触一些终端开发转后端开发的团队,有所触动,于是决定写下这篇文章,分享一下我对后台开发能力提升的一点思考。希望能帮到大家。
随着 B 站业务的快速发展,大数据的规模和复杂度也突飞猛进。为应对这一挑战,B 站一站式大数据集群管理平台(BMR),在千呼万唤中孕育而生。BMR 平台包含集群管理、元仓建设、智能运维等核心模块,这些功能很好的承接了业务场景的需求,显著提升了变更效率,保障了系统安全变更,优化了运维流程。本次分享将详细介绍 BMR 平台的各个模块功能及其在实际应用中取得的成效。
WebCodecs API 为 Web 平台提供了音视频编解码能力,使得在 Web 平台(网页、Electron)上实现高效、专业的视频剪辑成品成为可能。
自苹果推出AI手机以来,端侧大模型的产品发布进入加速期。 10月10日,Vivo推出蓝心端侧大模型 3B,其AI能力已覆盖60多个国家和地区,服务超5亿手机用户,大模型token输出量超过3万亿;随后,字节发布首款AI智能体耳机Ola Friend,与豆包深度集成;18日,荣耀同期发布了Magic OS 9.0 ,打造AI OS,其上的YOYO智慧助手已经打通了多款APP,可以实现一句话充值、一句话点外卖等服务。中国信通院与荣耀等企业还共同发布了《终端智能化分级研究报告》,推出了行业首个终端智能化分级体系。
文章深入探讨了软件开发中关于代码复用的哲学思考,作者通过自己的经历引入话题,结合软件设计领域的理论和观点,阐述了代码复用的本质及其在不同情境下的应用策略。