• ARTICLE
  • STRING
  • CONVERTER
  • ENCRYPT
  • NETWORK
  • MORE
    CHART
    MATH
    COORDINATE
    IMAGE
    FILE
  • ARTICLE
    STRING
    CONVERTER
    ENCRYPT
    NETWORK
    MORE
    CHART
    MATH
    COORDINATE
    IMAGE
    FILE
logo Online Tools
All Chinese English Newest Hottest
5442 search results

入行 15 年,我还是觉得编程很难

89 Technology lddgo Shared on 2024-03-05

文章讨论了 Kubernetes(K8s)服务网格技术的最新发展,重点分析了四种主要的服务网格解决方案:Linkerd、Cilium、Istio 和 Consul Connect,以及云提供商服务网格的概况。每种技术都有其独特之处,包括架构设计、易用性、功能以及与 Kubernetes 的集成方式。 此外,文章还探讨了这些技术的定价模型,指出免费服务网格时代的结束,以及企业在选择服务网格解决方案时需要考虑的成本因素。随着服务网格技术的发展,企业需要仔细评估各种选项,以找到最适合其特定需求和预算的解决方案。

56 Technology lddgo Shared on 2024-03-05

色彩空间(Color Space)是一种数学模型,用于描述和表示颜色的方式。不同的色彩空间有不同的用途和特点,可以用于不同的应用,如图像处理、计算机图形、印刷、摄影等领域。它一般用于描述设备的色彩能力,或者视频、图片的色彩范围。比如现在大部分人用的手机的屏幕,色彩空间大多为sRGB或者DCI-P3;网页上常见的图片或者视频内容,大多属于sRGB色彩空间;B站客户端播放的HDR视频,则处于BT.2020色彩空间。 目前B站UP主投稿视频是千变万化的,它们包含各种不同的色彩参数, 比如不同的色深,不同的色度采样坐标,不同的色彩空间,不同的亮度传递函数等等(如下图),而且每个用户观看这些视频的终端也不一样,这样就产生了各种各样的兼容性问题——很多时候用户的设备并不能完全正确显示UP主投稿的“原片”,而且老旧的设备或者浏览器也并不支持广色域或者HDR视频。为了考虑终端设备的兼容性和B站服务的完整性,我们会对用户投稿的不同色彩空间的视频进行统一处理。但是如何将各种不同色彩参数的视频进行准确地统一处理,同时又能保证视频的处理速度,这对于我们来说是一个巨大的挑战。

88 Technology lddgo Shared on 2024-03-05

2023年是大模型澎湃发展的一年:从22年11月ChatGPT的惊艳面世,到23年3月GPT4作为“与AGI(通用人工智能)的第一次接触”,到23年末多模态大模型的全面爆发,再到刚刚面世的Sora再次震惊世界。大模型给了世界太多的惊喜、惊讶、迷茫、甚至恐惧。 有人问我:“AGI的出现可以和人类哪次发现/发明相比?” “大概是人类开始使用‘火’的时刻。万有引力、iPhone什么的都不值一提。”

57 Technology lddgo Shared on 2024-03-05

大模型漏洞修复插件是腾讯朱雀实验室在安全垂类场景的一个重要实践。我们希望通过AI大模型,实现研发安全场景的漏洞自动修复,给出修复建议并提供修复代码,帮助更多开发人员提高研发效率。在腾讯混元大模型的支持下,漏洞修复插件通过精调后部署的私有化模型,实现了在帐密硬编码、SQL注入、命令注入等漏洞类型的修复建议输出和修复代码生成等功能,实现安全左移,更有效地在编程中使用插件收敛漏洞风险。

70 Technology lddgo Shared on 2024-03-05

随着相关技术和应用的发展,比如超高清屏幕、虚拟现实(VR)等沉浸式体验的增加,用户对超高分辨率图像和视频的需求变得越来越强烈。在这些场景中,图像的质量和清晰度对于提供最佳的用户体验至关重要。超高分辨率不仅能提供更清晰、更真实的视觉效果,还能在一定程度上增强人们的互动和沉浸感,在一些VR场景中我们需要8K甚至16K的才可以满足需求。然而要生成或者处理这些超高分辨率的内容,对算力的要求也是与日增长,对相关算法提出了挑战。 超分辨率是一个经典的计算机底层视觉问题,该问题要解决的是通过低分辨率的图像输入,获得高分辨率的图像输出。目前该领域的算法模型主要是有CNN以及Transformer两大类别,考虑到实际的应用场景,超分的一个细分领域方向是算法的轻量化。在上述提到的超高分辨率的场景,超分算法的算力消耗问题变得尤为关键。基于此,本文提出了一种名为CAMixerSR的超分框架,可以做到内容感知,通过对Conv和Self-Attention的分配做到计算量的大幅优化。

230 Technology lddgo Shared on 2024-03-05

无参视频质量评估 (Blind Video Quality Assessment,BVQA) 在评估和改善各种视频平台并服务用户的观看体验方面发挥着关键作用。当前基于深度学习的模型主要以下采样/局部块采样的形式分析视频内容,而忽视了实际空域分辨率和时域帧率对视频质量的影响,随着高分辨率和高帧率视频投稿逐渐普及,特别是跨分辨率/帧率视频转码档位画质评估场景中,这种影响变得更加不可忽视。在本文中,我们提出了一种模块化 BVQA 模型,以及一种训练该模型以提高其模块化性的方法。我们的模型包括基础质量预测模块、空域矫正模块和时域矫正模块,分别显式地响应视频质量的视觉内容和失真、空域分辨率和时域帧率变化情况。我们用提出的模块化BVQA模型在专业生成的内容和用户生成的内容视频数据库上进行了大量实验。实验表明,我们的质量模型实现了优于当前方法或相近的性能。此外,模块化的模型为分析现有视频质量数据库的空间和时间复杂性提供了机会。最后,我们的 BVQA 模型可以轻量高效地添加其他与质量相关的视频属性,例如动态范围和色域作为额外的矫正模块。

253 Technology lddgo Shared on 2024-03-05

单目动态场景(Monocular Dynamic Scene)是指使用单眼摄像头观察并分析的动态环境,其中场景中的物体可以自由移动。单目动态场景重建对于理解环境中的动态变化、预测物体运动轨迹以及动态数字资产生成等任务至关重要。 随着以神经辐射场(Neural Radiance Field, NeRF)为代表的神经渲染的兴起,越来越多的工作开始使用隐式表示(implicit representation)进行动态场景的三维重建。尽管基于NeRF的一些代表工作,如D-NeRF,Nerfies,K-planes等已经取得了令人满意的渲染质量,他们仍然距离真正的照片级真实渲染(photo-realistic rendering)存在一定的距离。我们认为,其根本原因在于基于光线投射(ray casting)的NeRF管线通过逆向映射(backward-flow)将观测空间(observation space)映射到规范空间(canonical space)无法实现准确且干净的映射。逆向映射并不利于可学习结构的收敛,使得目前的方法在D-NeRF数据集上只能取得30+级别的PSNR渲染指标。

221 Technology lddgo Shared on 2024-03-05

简单是一个成年人司空见惯的词,然而,大部分成年人却觉得纯真的孩子才是简单的。 很多时候,人们习惯把“简单”跟“容易”理解成一个意思。简单和复杂多用于形容事物或人的属性或状态,容易和困难一般形容达到某种目标的过程。生活中经常听到这样的感慨:「人活简单点真难啊!」、「系统一不小心就搞复杂了」。这些感慨背后流露出一种心愿 -- 保持简单。

51 Technology lddgo Shared on 2024-03-05

在本地进行项目开发时候,有些时候需要使用代理来访问某些测试环境的数据,这就要在 Webpack 对 devServer 的 proxy 做相关的配置。比如,我们经常会配置 target 和 cookies 来转发请求

93 Technology lddgo Shared on 2024-03-04