自大型语言模型(LLM)问世以来,其影响力逐渐渗透到推荐算法领域。在推荐算法领域中,如何有效利用大模型的能力,主要存在两种思路:一种是“改良派”,旨在通过大模型技术增强现有系统性能,在实际应用中逐步优化;另一种是“革命派”,认为现有推荐框架限制了大模型发挥,与其在已有的框架下小修小补,不如直接掀桌重开。认知推荐属于“改良派”的一种,它快速锚定了推荐中的“信息茧房”问题,通过大模型构建认知链路来深化用户兴趣探索,提升整个链路发现性水平,最终提升用户体验。
随着微服务的流行,服务之间的依赖性和调用关系变得越来越复杂,服务的稳定性变得尤为重要。业务场景中经常会涉及到瞬时流量冲击,可能会导致请求响应超时,甚至服务器被压垮、宕机不可用。出于对系统本身和上下游服务的保护,我们通常会对请求进行限流处理,快速拒绝超出配置上限的请求,保证系统或上下游服务系统的稳定。合理策略能有效应对流量冲击,确保系统可用性和性能。本文详细介绍了几种限流算法,比较各个算法的优缺点,给出了限流算法选型的一些建议,同时对业务上常用的分布式限流也提出一些解决方案。
创作者服务平台作为得物为社区创作者提供的PC端视频发布入口,地位非常重要。且随着功能的升级迭代,用户群体也越来越多。但我们偶尔会收到如下反馈: 视频损坏,无法播放 视频模糊 曝光度问题 黑屏,只有声音,没有画面
通过开发 Babel 插件,打包时自动为代码添加 可选链运算符(?.),从而有效避免 TypeError 的发生。
在团队日益注重流程与工具的当下,个体的因素反而容易被忽视。本文尝试从一名研发的视角,探讨在研发流程中,一些编码及编码以外的思考和原则,希望能为开发同学提供一些参考。
在2024年全球机器学习技术大会上,大模型的技术进步以及推理阶段的高效性成为了广泛关注的焦点。近年来,随着大规模语言模型(LLM)的参数量和功能复杂性的快速增长,其在实际应用中的计算开销和性能瓶颈逐渐显现,尤其是在推理阶段。如何在有限的硬件资源条件下有效加速推理过程,降低延迟并提升吞吐量,已经成为技术研发的核心议题。 大模型推理不仅仅是单一的算法优化问题,而是涉及到硬件、软件、算法、系统框架等多层次协同优化的综合工程。实际应用场景中,大模型的推理效率直接影响用户体验,尤其是在需要实时响应的场景下,诸如语音生成、智能对话、多模态翻译等任务。因此,推理加速不仅是技术挑战,同时也对大模型的商业化落地具有重要的意义。 在本研究中,基于最新技术实践,我们对大模型推理加速的关键技术进行了分析,并结合MindIE-LLM框架的具体优化案例,探索了从算法到硬件的多层次优化方案。本文的核心目标是为研究者和工程师提供系统化的推理加速思路,助力大模型在实际场景中的高效应用。
经过字节跳动内部半年多的使用和迭代,基于 Golang 的大模型应用综合开发框架 —— Eino,已在 CloudWeGo 正式开源啦!