Meituan-M17 团队联合上海交大等机构,分别推出了 OIBench(聚焦高区分度算法题评测)与 CoreCodeBench(聚焦多场景工程级代码基准)两大数据集,旨在揭示大模型编程能力真实水平,这两大数据集已分别在GitHub和Huggingface上进行开源。
在本文中,我们将深入探讨AI Agent的理论支撑以及其背后的第一性原理,回顾和分析第一性原理的发展轨迹,现阶段AI Agent所具备的能力,并探讨其在各个领域中的应用。接着,我们会展望AI Agent未来的发展方向,特别是在多Agent协作中的潜力和挑战。最后,我们将探讨Agent的未来技术发展及其广泛应用前景,为读者提供一个全面且深入的视角来理解和预测AI Agent的未来。
在当今数字化时代,动效设计已成为用户体验设计中不可或缺的一环。它不仅显著提升了用户体验,增强了用户粘性,还为业务带来了可观的收益。一个好的动效自然离不开专业且实用的动效设计工具,本文将为大家介绍一款我们自研的动效编辑器,旨在为动效设计师以及相关业务合作的同学提供一个高效、便捷且功能强大的创作平台,让设计师可以高效智能地设计动效。
沿着 AI 的发展脉络,本系列文章从Seq2Seq到RNN,再到Transformer,直至今日强大的GPT模型,我们将带你一步步深入了解这些关键技术背后的原理与实现细节。无论你是初学者还是有经验的开发者,相信读完这个系列文章后,不仅能掌握Transformer的核心概念,还能对其在整个NLP领域中的位置有一个全面而深刻的认识。那就让我们一起开始这段学习之旅吧!Embedding、向量、无监督学习、卷积、RNN、Transformer、PyTorch……当你意识到 AI 时代已经到来,决定迈出学习的第一步时,是否也和我一样被这些繁多的术语弄得无所适从、不知从何开始?本文旨在以简明易懂的方式,梳理 AI 的基础概念,帮助读者零帧起手,顺利开启 AI 学习之旅。之所以是 -1 开始是因为里面有部分我们高中学过的但已经被遗忘的知识。
在社区场景中,我们积累了丰富的用户互动数据。这些历史互动信息对CTR/CVR预估建模具有重要参考价值,用户的每次互动都反映了其特定维度的偏好特征。当前,已在多个业务实践中验证,基于用户历史互动特征进行未来行为预测是有效的。用户互动序列越长,包含的偏好特征就越丰富,但同时也带来了更大的技术挑战。目前社区搜索领域已经在序列建模方向取得了一些应用成果,显著提升了搜索效率,但在该方向上仍有优化空间,主要体现在:算法精排模型现状:长周期的用户互动特征尚未被充分利用,现有模型仅使用了基础标识信息,泛化能力有待提升。我们计划引入SIM方案来增强个性化序列建模能力,推动搜索效率提升。迭代效率优化:当前互动特征优化依赖于实时数据采集链路,新增特征需要长时间数据积累(2个月以上)才能验证效果。我们计划建设用户特征离线回溯服务,降低算法优化对实时数据的依赖,加快项目迭代速度,提高实验效率。离线回溯主要解决迭代效率问题,本文重点探讨在社区搜索场景下开发离线回溯,并做离线一致性验证过程中发现的一些问题,针对这些问题做了哪些优化措施及思考。
本文是vivo互联网大数据团队《BI 数据可视化平台建设》系列文章第3篇。 随着越来越多代码的堆积,平台的运行加载性能也在逐步下降,在不同程度上极大地影响了用户体验,从而导致用户流失。本文就是从这样的一个背景出发,通过对BI数据可视化平台的一系列的性能优化实践,给大家系统性阐述首页性能优化的核心策略,并探讨在日常开发中如何实现长效性能保障。