在《Effective HPA:预测未来的弹性伸缩产品》 一文中,我们提到原生HPA并不完美。基于阈值被动响应机制的滞后性与众多应用冷启动慢等原因导致很大一部分应用无法安心配置弹性。 基于DSP(Digital Signal Processing,数字信号处理)算法的预测机制,Crane确保在阈值到达之前就能提前感知并使应用提前弹出,确保冷启动慢的应用也能有效利用弹性。 在技术交流群中,不断有人问,DSP算法的原理和细节是什么。其所依赖的傅里叶变换号称上个世纪最强算法甚至有史以来最强算法,涉及很多数学基础,巧妙又复杂,学习门槛很高。 因此有必要写一篇文章,将对该算法的细节,以及Crane如何应用该算法公开来。为方便阅读,本文会尽量减少劝退的数学公式的出现次数。
近几年的互联网市场,有不少公司提出了“全链路设计师”、“用户体验设计师”的说法,合并交互与UI岗,一时间众说纷纭:有人说是高要求,有人则说这是一场变相的“人力压缩”。 其实,设计师作为一个高度复合型的岗位,虽有UI、交互、产品设计等细分,但无论是哪个细分岗位,都需要对业务、场景、用户、技术实现有所掌握,才能给出最佳的设计方案。高度竞争的市场环境下,单纯的“美化产品原型稿”,早已丧失了获得高回报工作的可能性。 因此,才会对设计师的要求越来越趋于综合化。放眼如今的UI设计师招聘描述:用户体验、交互可行性、数据分析……这些曾属于交互设计师的职责,已普遍的出现在UI设计师的必备技能中。
S12决赛尾声,伴随DRX成员们从眼泪到荣耀的升华,技术保障团队的心也松弛下来,逐渐把目光从监控中挪开。一方面分享胜利的喜悦,一方面也为实现了“边喝茶边保障”的目标而高兴。 B站在本次直播为了提升用户体验,开启了送礼特效。以送礼为核心的营收场景是业务主推的方向之一。为此团队的小伙伴们在业务需求繁忙的情况下,同时做了大量的准备和优化。 本文我们聚焦于以写为主的送礼场景,对我们的技术保障思路做个简单的总结。聚焦到一个问题,那就是:高写场景该如何做技术保障?
Serverless 架构与 CI/CD 工具的结合 CI/CD 是一种通过在应用开发阶段引入自动化流程以频繁向客户交付应用的方法。如图所示,CI/CD 的核心概念是持续集成、持续交付和持续部署。 作为一个面向开发和运营团队的解决方案,CI/CD 主要针对集成新代码时所引发的问题。具体而言,CI/CD 可以让持续自动化和持续监控贯穿于应用的整个生命周期(从集成、测试阶段到交付和部署阶段)。这些关联的事务通常被统称为“CI/CD 管道”,由开发和运维团队以敏捷方式协同支持。
互联网企业经历过野蛮生长的开拓红利期之后,逐渐越发重视产品发展的科学化、精细化,从粗放型向集约型转换。在美国,增长黑客等数据驱动增长的方法论,正在帮助如Google、Microsoft、Facebook等全球科技巨头实现持续的业务增长;在国内,数据精细运营、AB实验分析来驱动业务有效增长也逐渐成为共识,成为核心手段。其中,A/B测试平台作为典型代表,自然成为了国内主流公司中必不可少的核心工具,有效的提升流量的转化效率和产研的迭代效率。 在过去几年,vivo互联网持续重视科学的实验决策,这意味着所有对用户的改动的发布,都要决策者以相应的实验结论作为依据。比如,修改顶部广告的背景色、测试一个新的广告点击率 (CTR) 预测算法,都需要通过实验的方式进行,那么一个强大的A/B实验平台就非常重要了。vivo霍金实验平台(以下简称霍金)已经从一个单一系统成长为了解决A/B实验相关问题的公司级一站式平台,助力互联网核心业务的快速、准确实验,高效推动业务增长。
WLock为⽤户提供了秘钥作为集群分配、锁操作、隔离、权限控制的租户单位。为了保证数据的强一致性与服务吞吐能力,每个节点采用多Paxos分组并行向所有副本同步锁状态数据。业务接入前,首先会创建秘钥,并为秘钥分配可用的服务集群(通常包含5个节点)。在生产环境,如果为每个接入的业务独立部署集群,随着接入量的增多,存在管理不便以及资源浪费的问题。所以WLock采用的是多租户共用一个集群的部署方式,但这种方式必须要解决多个秘钥的租户因调用量参差不同而相互影响的问题。