• ARTICLE
  • STRING
  • CONVERTER
  • ENCRYPT
  • NETWORK
  • MORE
    CHART
    MATH
    COORDINATE
    IMAGE
    FILE
  • ARTICLE
    STRING
    CONVERTER
    ENCRYPT
    NETWORK
    MORE
    CHART
    MATH
    COORDINATE
    IMAGE
    FILE
logo Online Tools
All Chinese English Newest Hottest
5181 search results

随着AI技术的飞速发展,2024年至2025年间,AI研发工具已成为软件开发领域的重要组成部分。本文从个人视角出发,从产品功能、使用体验、优劣势、收费模式及开源情况等多个维度,对当前主流的AI研发工具进行了全面对比分析。文章主要分为四大类:云端开发工具(如v0.dev、bolt.new、Lovable)、AI原生代码编辑器(如Cursor、Windsurf、Trae)、IDE插件(如GitHub Copilot、Cline、通义灵码)以及底层编码大模型(如Claude Sonet、Deepseek V3/R1)。通过横向对比,帮助开发者快速了解各类工具的特点与适用场景,为选择合适的研发工具提供参考。 此外,文章还探讨了AI研发工具未来的发展趋势,包括云端协同、全链路覆盖、多模态能力等方向,并指出当前AI出码的主要瓶颈在于长文本理解、图像识别及模型调用成本。尽管目前部分工具仍存在不足,但正如工业革命中蒸汽机取代手工锻打一样,AI研发工具正逐步改变传统开发流程,推动行业迈向更高效率的时代。

48 Technology lddgo Shared on 2025-04-16

作为非算法同学,最近被Cursor、DeepSeek搞的有点焦虑,同时也非常好奇这里的原理,所以花了大量业余时间自学了Transformer并做了完整的工程实践。希望自己心得和理解可以帮到大家~

28 Technology lddgo Shared on 2025-04-16

DGraph是得物自主研发的新一代推荐系统核心引擎,基于C++语言构建,自2021年启动以来,经过持续迭代已全面支撑得物社区内容分发、电商交易等核心业务的推荐场景。DGraph在推荐链路中主要承担数据海选和粗排序功能,为上层精排提供高质量候选集。

39 Technology lddgo Shared on 2025-04-16

在离线混部可以提高整体的资源利用率,不过离线Spark任务部署到混部容器集群需要做一定的改造,本文将从在离线混部中的离线任务的角度,讲述离线任务是如何进行容器化、平台上的离线任务如何平滑地提交到混部集群、离线任务在混部集群中如何调度的完整实现以及过程中的问题解决。

58 Technology lddgo Shared on 2025-04-16

2020年一月,36氪发表了一篇10万+阅读的技术文章《中台,我信了你的邪》。有幸作为文章中唯一正面主角露脸,因为通篇文章,貌似只有百果园自认为中台实施是成功的。五年过后,中台仍然是各持一说,甚至中台的“鼓吹者”也在23年传出“去中台”的说法。 作为严谨的技术人员,我们当然不能人云亦云,事物本身就是一体两面,我们今天做一个复盘,在复盘的过程中,自己学到了知识,以后的工作能够更好开展,才是本文的核心。

47 Technology lddgo Shared on 2025-04-15

本文介绍了企业如何利用MCP(Model Context Protocol)实现AI应用架构的新范式转型。

44 Technology lddgo Shared on 2025-04-15

OpenAI 官宣全面支持MCP协议,至此MCP已得到业界广泛的认可。正逐步成为AI应用架构的基础协议。做为AI应用架构的USB-C,MCP原理是怎样的?对实际业务又有何影响呢?本文以MCP原理解读及业务实践为切入点,探索AI应用架构在业务领域落地的路径。

41 Technology lddgo Shared on 2025-04-14

作为一种新的商品表现形态,内容几乎存在于手淘用户动线全流程,例如信息流种草内容、搜索消费决策内容、详情页种草内容等。过去一年,我们通过在视频生成、图文联合生成等核心技术上的持续攻关,AIGC内容生成在手淘多个场景取得了规模化落地价值。本专题《淘宝的AIGC内容生成技术总结》是我们摸索出的一部分实践经验,我们将开启一段时间的内容AI专题连载,欢迎大家一起交流进步。

49 Technology lddgo Shared on 2025-04-14

本文作者主要阐述为什么大家认为 Agent 模式会在 2025 年开始爆发,我们有了哪些进步,我们又面临了哪些挑战。

43 Technology lddgo Shared on 2025-04-14

在模型轻量化领域,量化是一种用于减少神经网络模型大小和计算量的技术,将模型参数(权重)或中间变量(激励)从高精度类型(FP32, FP16, BF16等)转换为低精度类型(int8, int4, fp8等)。 而近年来随着Transformer,MoE等架构的提出和大模型的兴起,使得神经网络模型能轻松突破几十亿甚至上万亿的规模参数,因此,我们需要一些适应于大模型的压缩技术,来降低模型的部署成本,并提升模型的推理效率。 从最初的GPTQ、AWQ等weight-only的量化算法开始,到现在LLM从训练、推理、轻量化、Agent等所有赛道都卷到飞起的时代,基于大模型的特性,在两年多时间里业内已有很多新的量化算法。 

48 Technology lddgo Shared on 2025-04-14