iLogtail 作为一款阿里云日志服务(SLS)团队自研的可观测数据采集器,拥有的轻量级、高性能、自动化配置等诸多生产级别特性,可以部署于物理机、虚拟机、Kubernetes 等多种环境中,用于采集文件、容器输出、指标等各类可观测数据。iLogtail 的核心定位是帮助开发者构建统一的数据采集层,助力可观测平台打造各种上层的应用场景;此外,对于一些寻求轻量计算的场景,也可以使用 iLogtail 承担一些数据聚合、数据过滤、数据路由等功能。
漫画的内容是由一张张的图片构成,这些图片就是我们的资产,为了防止盗版商/灰黑产能轻易地获取这些资产,我们需要提供一个图片加密方案,以此来保证这些内容只能在我们允许的分发渠道上展示。
ByteHouse 是火山引擎上的一款云原生数据仓库,为用户带来极速分析体验,能够支撑实时数据分析和海量数据离线分析。便捷的弹性扩缩容能力,极致分析性能和丰富的企业级特性,助力客户数字化转型。 全篇将从两个版块讲解 ByteHouse 的技术业务场景及实践经验。第一版块将核心介绍 ByteHouse 于字节内部的业务应用场景,以及使用 ClickHouse 打造实时数仓的经验。第二板块将集中讲解字节基于 ByteHouse 对金融行业实时数仓的现状的理解与思考。
级 Topic、跨地域数据复制、持久化存储、分层存储、高可扩展性等企业级和金融级功能。Apache Pulsar 提供了统一的消费模型,支持消息队列和流两种场景,既能为队列场景提供企业级读写服务质量和强一致性保障,又能为流场景提供高吞吐、低延迟。 Apache Pulsar 在腾讯云中已经得到大规模的生产实践,在过去一年中承接了诸多行业生态中不同的使用场景。在实际的生产实践中,腾讯云针对 Apache Pulsar 做了一系列的性能优化和稳定性功能方面的工作,来保障用户在不同的场景下系统的稳定高效的运行。本文围绕腾讯云近一年在 Pulsar 稳定性和性能方面优化最佳实践。
榜单在经历了供给量迅速增长及C端分发场景多样化等迭代,数据量及峰值流量呈十倍百倍增长,这必然带来数据库的极大存储压力和C端查询性能降低。为满足未来各类复杂定制化规则和亿万级数据甄选,综合引导消费者的购物决策,得物商品榜单生产迁移及B/C端数据存储隔离应运而生。