This series of blog posts present a collection of low-latency techniques in Flink. In part one, we discussed the types of latency in Flink and the way we measure end-to-end latency and presented a few techniques that optimize latency directly. In this post, we will continue with a few more direct latency optimization techniques. Just like in part one, for each optimization technique, we will clarify what it is, when to use it, and what to keep in mind when using it. We will also show experimenta
Apache Flink is a stream processing framework well known for its low latency processing capabilities. It is generic and suitable for a wide range of use cases. As a Flink application developer or a cluster administrator, you need to find the right gear that is best for your application. In other words, you don’t want to be driving a luxury sports car while only using the first gear.
One of the most important characteristics of stream processing systems is end-to-end latency, i.e. the time it takes for the results of processing an input record to reach the outputs. In the case of Flink, end-to-end latency mostly depends on the checkpointing mechanism, because processing results should only become visible after the state of the stream is persisted to non-volatile storage (this is assuming exactly-once mode; in other modes, results can be published immediately).
Deciding proper parallelisms of operators is not an easy work for many users. For batch jobs, a small parallelism may result in long execution time and big failover regression. While an unnecessary large parallelism may result in resource waste and more overhead cost in task deployment and network shuffling.
容器本质是一项隔离技术,很好的解决了他的前任 - 虚拟化未解决的问题:运行环境启动速度慢、资源利用率低,而容器技术的两个核心概念,Namespace 和 Cgroup,恰到好处的解决了这两个难题。Namespace 作为看起来是隔离的技术,替代了 Hypervise 和 GuestOS,在原本在两个 OS 上的运行环境演进成一个,运行环境更加轻量化、启动快,Cgroup 则被作为用起来是隔离的技术,限制了一个进程只能消耗整台机器的部分 CPU 和内存。
KubeVela 是一个简单易用且高度可扩展的应用交付和管理平台,基于 Kubernetes 与 OAM 技术构建。其核心功能是让开发人员方便快捷地在 Kubernetes 上定义与交付现代微服务应用,而无需了解任何 Kubernetes 本身相关的细节。
目前,业界已经总结出了几种常见的服务发布策略来解决版本升级过程中带来的流量有损问题。本文首先会对这些普遍的发布策略进行简单的原理解析,最后结合阿里云的云原生网关对这些发布策略进行实践。