在现代前端应用中,日志回捞系统是排查线上问题的重要工具。然而,传统的日志系统往往面临着包体积过大、存储无限膨胀、性能影响用户体验等问题。本文将深入分析我们在@dw/log和@dw/log-upload两个库中实施的关键性能优化,以及改造过程中遇到的技术难点和解决方案。
导购是指在购物过程中为消费者提供指引和帮助的人或系统,旨在协助用户做出更优的购买决策。在电商平台中,导购通过推荐热卖商品、促销活动或个性化内容,显著提升用户的购物体验,同时推动销售额的增长。其核心目标是通过精准的引导,满足用户需求并促进商业价值最大化。 词分发:导购的重要组成部分 在电商导购体系中,词分发作为关键环节,主要聚焦于与关键词推荐相关的功能。这些功能包括但不限于下拉词、底纹词、热搜榜单、锦囊词以及风向标等。这些推荐词能够帮助用户快速定位感兴趣的商品或服务,降低搜索门槛,提高购物效率。例如,下拉词可以在用户输入搜索内容时提供智能提示,而热搜榜单则能引导用户关注平台上的热门趋势。
R8作为谷歌官方的编译优化工具,在编译阶段会对字节码进行大规模修改,以追求包体优化和性能提升。但是Android应用开发者数量太过庞大,无论测试流程多么完善,终究难以避免在一些特定场景下出现问题。 近期我们在升级项目的AGP,遇到了一个指向系统SurfaceTexture类的native崩溃问题。经反编译分析发现问题最终指向了smali字节码中多余的一行new-instance指令。
在软件开发领域,需求变更如同家常便饭。一个缺乏扩展性的系统,往往在面对新功能需求或业务调整时,陷入“改一行代码,崩整个系统”的困境。可扩展性设计的核心目标是:让系统能够以最小的修改成本,适应未来的变化。对于Go语言开发者而言,利用其接口、并发、组合等特性,可以高效构建出适应业务演进的系统。 本文将从架构设计原则、编码实践、架构实现模式、验证指标到演进路线,系统讲解如何设计一个“生长型”系统。
得物近年来发展迅猛,平台商品类目覆盖越来越广,商品量级越来越大。而以往得物的上新动作更多依赖于传统方式,效率较低,无法满足现有的上新诉求。那么如何能实现更加快速的上新、更加高效的上新,就成为了一个至关重要的命题。近两年AI大模型技术的发展,使得发布和审核逐渐向AI驱动的方式转变成为可能。因此,我们可以探索利用算法能力和大模型能力,结合业务自身规则,构建更加全面和精准的规则审核点,以实现更高效的工作流程,最终达到我们的目标。本文围绕AI审核,介绍机审链路建设思想、规则审核点实现快速接入等核心逻辑。
在电商营销中,会场是承载活动流量的核心阵地。得物的营销会场不仅覆盖520、七夕等活动节点,也支撑日常的"天天领券"、"疯狂周末"等高频运营场景。数据显示,会场的UV占比、GMV贡献、订单量均占平台重要比重。然而,随着业务复杂度提升,会场配置面临三大挑战。
客服知识库是一个集中管理和存储与客服相关的信息和资源的系统,在自研知识库上线之前,得物采用的承接工具为第三方知识库系统。伴随着业务的发展,知识的维护体量、下游系统的使用面临的问题愈发明显,而当前的第三方采购系统,已经较难满足内部系统间高效协作的诉求,基于以上业务诉求,我们自研了一套客服知识库。
在日常工作中,常需要通过各项数据指标,确保驱动版本项目进展正常推进,并通过各种形式报表数据,日常总结日报、周会进展、季度进行总结输出归因,分析数据变化原因,做出对应决策变化,优化运营方式,目前在梳理整理校准分析数据需要大量的时间投入、结合整体目标及当前进展,分析问题优化的后续规划。
在过去的一年里,我们团队完成了一项壮举:将近万核的 Java 服务成功迁移到 Rust,并收获了令人瞩目的性能提升。我们的实践经验已在《RUST练习生如何在生产环境构建万亿流量》一文中与大家分享。然而,在这次大规模迁移中,我们观察到一个有趣的现象:大多数服务在迁移后性能都得到了显著提升,但有那么一小部分服务,性能提升却不尽如人意,仅仅在 10% 左右徘徊。这让我们感到疑惑。明明已经用上了性能“王者”Rust,为什么还会遇到瓶颈?为了解开这个谜团,我们决定深入剖析这些“低提升”服务。今天,我就来和大家分享,我们是如何利用 Profiling 工具,找到并解决写入过程中的性能瓶颈,最终实现更高性能飞跃的!在性能优化领域,盲目猜测是最大的禁忌。你需要一把锋利的“手术刀”,精准地找到问题的根源。在 Rust 生态中,虽然不像 Java 社区那样拥有 VisualVM 或 JProfiler 这类功能强大的成熟工具,但我们依然可以搭建一套高效的性能分析体系。为了在生产环境中实现高效的性能监控,我们引入了 Jemalloc 内存分配器和 pprof CPU 分析器。这套方案不仅支持定时自动生成 P
Valkey 社区于 2024 年 09 月发布了 Valkey8.0 正式版,在之前的文章《Redis 是单线程模型?》中,我们提到,Redis 社区在 Redis6.0 中引入了多线程 IO 特性,将 Redis 单节点访问请求从 10W/s 提升到 20W/s,而在 Valkey8.0 版本中,通过引入异步 IO 线程、内存预取(Prefetch)、内存访问分摊(MAA)等新特性,并且除了将读写网络数据卸载到 IO 线程执行外,还会将 event 事件循环、对象内存释放等耗时动作也卸载到 IO 线程执行,使得 Valkey 单节点访问请求可以提升到 100W/s,大幅提升 Valkey 单节点性能。Valkey 8.0中引入的异步 IO 与 Redis 6.0 中的多线程 IO 有什么区别?Valkey8.0 中如何应用内存预取和内存访问分摊技术进一步来提升性能的?本篇文章让我们来一起看看。