随着互联业务的发展、业务逐渐的复杂,传统代码架构在日常开发中存在的多种弊端,如代码混乱、补丁式开发、迭代成本高等问题,大大影响了迭代的效率。本文作者借助 DDD 的战略设计和战术设计,介绍了如何通过限界上下文、领域模型、聚合、资源库等概念,实现业务逻辑与技术的解耦,提升代码的可维护性、扩展性和稳定性。同时,文章作者结合团队在落地DDD时,遇到的卡点、痛点,创新性的提出一种 DDD 的分层实践,并在实际开发中取得了较好的效果
多模态理解大模型,是一类可以同时处理和理解多种数据形式(如图像、文本、视频等)的人工智能大模型,可以应用于图文理解、视觉问答、文档理解、场景描述等任务。本文将介绍目前热门的 DeepSeek-VL2多模态大模型。DeepSeek-VL2是一款基于混合专家(MoE,Mixture of Experts)架构的多模态大模型,结合了混合专家架构和多模态数据处理能力,通过稀疏计算和专家分工的方式高效处理多种模态(如文本、图像、音频等)的数据,推理时只激活部分网络参数。而前两期课程介绍的 Qwen2.5VL、Janus-Pro 以及 DeepSeek-VL第一代模型,则是经典的 Dense 类的多模态理解大模型,会对所有模型参数进行计算和更新。MoE(Mixture of Experts)混合专家模型的核心思想是将模型划分为多个专家子网络(experts),并通过路由机制(router)动态选择合适的专家来处理输入数据。MoE 的最大优势就是是稀疏激活,只有少数几个专家网络模块会被激活,这意味着计算量可以显著减少,计算效率得到提升,同时精度指标远远超出相同激活参数量的 Dense 类模型。
语义嵌入是自然语言处理、信息检索、推荐系统等领域的核心技术,对于精准捕捉文本深层次语义信息至关重要。近年来,大语言模型(LLM)的兴起为语义嵌入技术开拓了新的方向。本文介绍了LLM在提升语义嵌入效果的最新模型与算法,聚焦在如何利用LLM生成合成数据以及如何作为模型骨干来优化语义嵌入。文章概述了当前研究的主要方向和先进成果,展示了LLM在学习语义嵌入方面的独特优势,并展望了其在搜索、推荐等下游任务的广阔应用前景。
当我们在云上部署 DeepSeek 系列大模型的时候,可以选择多机或者单机 8 卡的 GPU 裸金属实例运行满血版,或者选择单卡和双卡 GPU 虚拟机运行蒸馏版。 这些 GPU 云服务器实例能否发挥多机、多卡、单卡的性能,将直接影响部署的 DeepSeek 服务的吞吐能力。除此之外,在训练场景中这些实例的相关能力能将直接影响训练时长。 本文将针对 GPU 云服务器的软件系统设计和实现进行概述,并分享百度智能云的最新实践成果。
【1】OpenAI首个智能体Operator大测评 【2】腾讯落子,AI后手入场 【3】字节OmniHuman-1人体动画生成新突破 【4】2025年最佳项目管理工具对比 【5】DeepSeek爆火,巨头开始反击 【6】微软SWE Agent首曝光 【7】山姆·奥特曼提出AI经济学观察 【8】华为小艺版DeepSeek和R1有何差别 【9】AI霸屏第二年,硅谷大佬们Pick哪些产品 【10】OpenAI发布全新VI设计指南
随着AGI理论的不断突破,智能体已经成为LLM在企业落地的最重要的形式之一。一个完备的智能体必须能实现:感知、推理、计划、执行等一套完整的功能,从工程的角度来看workflow特别适合这种复杂任务的分析、拆解、重组、执行, 再结合CoT技术, 实现LLM和业务功能完美契合的智能体应用。本文尝试用成熟的图引擎技术驱动workflow探索更多样性的拓展agent能力的方法,以更好应对各类业务场景。
直播间互动体验框架技术实践,揭秘性能与稳定性优化之道,快来探索吧!在百度直播间歌会红包等活动中,我们创新性地将红包互动与高质内容深度融合,通过技术架构升级与系统性优化,打造了"音乐+红包"(边听歌边抢红包)的沉浸式体验。本次实践显著提升了直播间的并发承载能力、实时互动响应速度和用户参与满意度,同时沉淀出可复用的技术方案,为后续大型直播活动奠定坚实基础。