在 AI 时代,若你还在紧盯代码量、执着于全栈工程师的招聘,或者仅凭技术贡献率来评判价值,执着于业务提效的比例而忽略产研价值,你很可能已经被所谓的“常识”困住了脚步。
D是我们团队的服务端应用,其代码库历史悠久,最早可以追溯到淘宝APP无线端迁移,应用中许多代码已无线上流量,但代码并未随业务的下线被清理。越来越多的代码“沉淀”下来,既增加了团队新人学习门槛,也增加日常开发维护成本。但实际做代码下线并非容易,仅凭业务逻辑决策代码清理费时费力,还容易误删在使用的业务代码,因此非常需要工具来辅助做代码的清理,这就是基于代码执行染色和覆盖分析做代码下线方案的背景。 代码执行染色&执行覆盖率分析,使用JVM agent的扩展能力实现代码的插桩和在线染色,再通过解析采样的数据可得到代码的执行情况,清理代码就“有理有据”;仅靠原始分析出的数据清理依然低效,为此我们将数据采集、覆盖率可视化通过IDEA插件集成,实现清理无效代码过程又准又快。
随着 LLM 应用的飞速发展,越来越多的 Agent 应用开始走近每个人。围绕着 Agent 应用的核心,目前业界有零代码、低代码和高代码三条主流的技术路线。AgentScope 作为 Python 社区中受到广泛应用的高代码框架,在 Java 生态下的需求也越来越大。今天,我们很高兴地宣布 AgentScope Java v0.2 版本正式发布了,具备了所有核心的 ReActAgent 的能力。
本文首先以淘天电商交易订单表线上一条非典型慢 SQL 的深入剖析为切入点,示范如何系统地分析与排查慢 SQL;接着详尽归纳了索引分类、B+Tree 与 B‑Tree 的结构差异、B+Tree 高度估算方法、EXPLAIN 与 Query Profile 等诊断工具的使用,以及索引下推与排序的执行流程等索引优化理论;最后结合日常实践经验,提出了适用于大规模线上集群的索引变更 SOP,并总结了常见的慢 SQL 成因与相应的解决策略。
本文讲述 Dify 平台在 Agentic 应用开发中面临的可观测性挑战,从开发者与运维方双重视角出发,系统分析了当前 Dify 可观测能力的现状、局限与改进方向。
你是不是也有过刚刷完进站闸机,抬头十几条指示牌,一脸懵;换乘只隔一条站台 最后走到腿软还绕回原点;地铁口连商场没指路牌,硬生生逛成“买单人流”。面对日益多样化的用户场景和亟待提升的用户体验指标,现有的通用引导策略已显不足。而高德地图的公交接驳指引项目是从“以交通方式为中心”到“以用户完整行程为中心”的升级。通过激活数据关联价值,为用户提供无缝的端到端出行体验。
本文介绍了手淘穿搭星球业务在面对快速迭代和极致用户体验需求时,从初期Weex方案转向Native技术栈,并基于微服务架构设计了TurboUIBuilder这一可视化页面搭建平台。该方案通过Template-Container-Component三层结构实现页面布局的结构化与动态化,结合DX动态组件、keypath数据绑定协议和内置核心服务(如布局、数据、埋点等),提升了开发效率30%-50%,实现了双端一致性、体验优化开箱即用(如无极缩放转场、多媒体浏览)以及页面的远程动态更新。同时,依托Skyline模板发布平台,支持高效、安全的模板管理与AB测试,最终形成了一套可复用、易扩展、高稳定性的Native页面底层构建引擎,已在穿搭星球等多个场景落地并持续演进。
今天我们习以为常的 async/await,是 Python 异步编程的标准范式。但很少有人意识到,这个简洁优雅的语言结构并非凭空而来。它是一段跨越二十年的技术演进成果——从最原始的生成器(generator)出发,历经社区实践中的“打补丁”阶段(如 @wrappertask),再到语言层面引入 yield from 和原生协程,最终形成了现代异步体系。本文将按技术发展的真实时间线与逻辑脉络,带你完整还原这段历史:为什么需要协程?嵌套任务如何调度?wrappertask 是谁的“替身”?await 究竟比 yield from 强在哪?我们将一步步揭开 Python 协程从“手工轮子”走向语言级支持的全过程。