Ant Design v6 的开发过程中,由于不需要再考虑 IE 的兼容问题,我们对部分组件改造使用了 CSS 变量获得了更小的 CSS 体积以及更好的性能。今天我们来聊聊 CSS 变量的一些小事。
本文整理自阿里云智能集团高级技术专家周礼在 2025 全球机器学习技术大会上的精彩演讲《Apache RocketMQ x AI:面向异步化 Agent 的事件驱动架构》,介绍了如何基于 Apache RocketMQ 新特性构建异步化 Multi-Agent 系统,深入探讨了 Agent 间的异步通信、上下文隔离、状态恢复与任务编排机制,并通过实际案例展示如何利用 RocketMQ 实现 Multi-Agent 的任务调度。
MYKMP 是支付宝基于社区 Kotlin MultiPlatform 与 Compose MultiPlatform 研发的原生跨平台解决方案,三端(Android、iOS、HarmonyOS)一码地共享业务逻辑与 UI 代码,减少为不同平台编写和维护相同代码所花费的时间,同时保留了原生编程的灵活性和优势。在支付宝内部我们也称之为 “Bundle 3.0”。去年 8 月,我们开始研发整个框架,历经一年有余,目前支付宝每天已经有亿级稳定流量运行着,在此向大家正式介绍我们的解决方案。本文会概述性地介绍我们的整体建设,并详细讲讲我们鸿蒙版本的架构方案与工程建设。
在AI时代天猫技术质量同学在质量保障方面也不断探索AI在测试全流程提效的落地方案,传统测试工作链条拆解为“需求解析 → 用例生成 → 数据构造 → 执行验证 → 对比校验”五大核心阶段,而我们的目标是通过AI+自然语言驱动,实现全流程自动化、可溯化、可管理化。而最AI参与到测试中来,最主要的目标就是提效,目前几个月的实践下来发现在用例生成、测试数据构造和交易链路数据执行的过程中提效明显,下面来给大家简单介绍一下AI参与在测试流程中的实践方案。
本文介绍在C3级代码仓库中落地LLM代码评审的Agent实践。针对C3仓库禁用闭源模型的安全要求,基于Qwen3-Coder、RAG、Iflow实现,通过百炼Embedding构建知识索引,RAG知识库与生产代码同仓管理,文档与代码共生命周期保障一致性,AI辅助人工代码评审。在CI流水线监听代码修改自动触发AI评审,LLM进行代码解释、逻辑分析和识别并发缺陷、资源泄漏、边界错误、性能瓶颈及规范问题。以块存储C/C++百万行大库为例,已累计执行上千次评审,并部署至存储统一代码门禁平台,支持平台接入所有仓库。 实践表明,AI可有效发现传统CR易忽略的逻辑风险,已数十次成功拦截高危缺陷,显著提升评审效率与质量。当前持续优化准确性、误报率、采纳率,增强上下文感知,探索修复建议生成。该实践可复用于各类代码门禁平台或AI辅助编程工具。