ReAct范式深度解析:从理论到LangGraph实践
                Source : 
                mp.weixin.qq.com
                
                
            
            最近在做智能解决方案系统时,我遇到了一个关键问题:如何让AI在复杂任务中既保持推理能力,又能有效执行行动?传统AI系统往往要么只能基于训练数据推理,要么只能执行固定流程,缺乏动态决策能力。ReAct(Reasoning and Acting)范式正是为了解决这个问题而诞生的。它让AI能够交替进行推理和行动,通过"思考-行动-观察-调整"的循环,实现更智能的决策过程。本文将解析ReAct范式的原理,分析LangGraph中的实现机制,并通过真实项目案例展示如何在实际应用中发挥ReAct的价值。