在本文中,我们将讨论驱动 WebAssembly 程序运行的核心组件——引擎。首先,本文将简要介绍一个语言的引擎包括哪些主要组成部分,它们如何配合完成工作,尝试构建一个概念模型。之后,就几款社区流行的开源引擎,分别介绍各自的特点。
随着机器学习的发展,模型及训练模型所需的数据量越来越大,也都趋向于通过分布式训练实现。而算法工程师通常需要对这些分布式框架涉及到的底层文件存储和调度系统有较深的理解,才能够快速批量开启模型训练,保证资源利用率。 目前业界有很多类似的框架,如 TonY、TensorFlowOnSpark,Kubeflow 中的 Training Operators 等,但这些框架或多或少存在某些问题,如与固定的机器学习框架( Tensorflow,Pytorch )耦合需要写明例如 PS、Worker 等角色,容错和弹性调度支持不友好,不支持异构调度,调度语义较为简单,不支持文件读取等。 将算法工程师从此类繁重的底层细节中解脱出来、更多地关注到算法层面,即为 Primus 解决的问题。
在实际的开发工作过程中,积累了一些常见又超级好用的 Javascript 技巧和代码片段,包括整理的其他大神的 JS 使用技巧,今天筛选了 9 个,以供大家参考。
WebAssembly (WASM) 的一个优势就是能够支持将不同语言编译成 WASM 代码,然后在不同的宿主环境中运行。这样就可以在不同的宿主环境中运行不同语言编写的 WASM 代码,比如在浏览器中运行 C/C++ 代码,或者在 Node.js 中运行 Rust 代码。那么,这些不同语言编写的 WASM 代码是如何运行在不同的宿主环境中的呢?在这一章中,我们将会重点介绍这些不同的语言和宿主环境中的 WASM 运行机制。
计算机视觉领域三大顶会之一的 CVPR 今年已经开奖啦。 今年的 CVPR 将于六月在加拿大温哥华举办,和往年一样,字节跳动技术团队的同学们收获了不少中选论文,覆盖文本生成图像、语义分割、目标检测、自监督学习等多个领域,其中不少成果在所属领域达到了 SOTA(当前最高水平)。 一起来看看这些成果吧~
DataLeap 作为一站式数据中台套件,汇集了字节内部多年积累的数据集成、开发、运维、治理、资产、安全等全套数据中台建设的经验,助力企业客户提升数据研发治理效率、降低管理成本。 Data Catalog 是一种元数据管理的服务,会收集技术元数据,并在其基础上提供更丰富的业务上下文与语义,通常支持元数据编目、查找、详情浏览等功能。目前 Data Catalog 作为火山引擎大数据研发治理套件 DataLeap 产品的核心功能之一,经过多年打磨,服务于字节跳动内部几乎所有核心业务线,解决了数据生产者和消费者对于元数据和资产管理的各项核心需求。 Data Catalog 系统的存储层,依赖 Apache Atlas,传递依赖 JanusGraph。JanusGraph 的存储后端,通常是一个 Key-Column-Value 模型的系统,本文主要讲述了使用 MySQL 作为 JanusGraph 存储后端时,在设计上面的思考,以及在实际过程中遇到的一些问题。