大模型剪枝新范式:先浓缩,再剪枝——DenoiseRotator技术解读
出处:
mp.weixin.qq.com
美团LongCat Interaction团队联合上海交通大学听觉认知与计算声学实验室,以及香港科技大学的研究者,共同完成了大模型剪枝方法的创新研究,提出了名为DenoiseRotator的新技术。通过首先对参数矩阵进行变换,“将知识和推理能力浓缩到由少量参数组成的子网络内”,“再裁剪掉子网络外的参数”,实现了大模型剪枝的新范式。DenoiseRotator能够与现有的剪枝算法快速集成,有效缓解模型压缩带来的性能损失。这一研究成果已在2025年的NeurIPS会议上发表。
查看原文
7
技术
lddgo
分享于
2025-12-18