本文总结了在构建面向AI的数据知识库中的实践经验,针对数据资产庞杂、语义不统一、维护成本高等问题,提出以“不重构模型、小而精维护、支持灵活扩展”为原则,通过结构化构建指标、实体、属性、表和字段五类知识,并结合图谱召回与Agent框架,实现自然语言到SQL的智能取数。文章还介绍了从钉钉文档快速验证到产品化平台建设的演进过程,并展望了在准确性提升、知识保鲜和能力拓展等方面的未来方向。