主成分分析(PCA,Principal Component Analysis)是一项在高维数据中,寻找最重要特征的降维技术,大大减少数据的维度,而不显著损失信息量。本文将通过基于飞桨框架的实际代码示例,来展示所提供的高效、灵活的线性代数 API,如何简化机器学习和深度学习中的数据处理和分析工作,为高维数据集的处理和分析提供了有效工具。
为了让飞桨开发者们掌握第一手技术动态、让企业落地更加高效,飞桨官方在7月至10月特设《飞桨框架3.0全面解析》系列技术稿件及直播课程。技术解析加代码实战,带大家掌握包括核心框架、分布式计算、产业级大模型套件及低代码工具、前沿科学计算技术案例等多个方面的框架技术及大模型训推优化经验。
本文将详细介绍如何在 PaddlePaddle 中利用稀疏计算应用稀疏 ResNet,涵盖稀疏数据格式的础知识、如何创建和操作稀疏张量,以及如何开发和训练稀疏神经网络模型。
本文深入探讨了如何在Embedding空间中运用先进的时序异常检测技术,针对安全、反作弊等业务场景下的流量与用户行为进行精准监控。通过向量化处理和Embedding技术,将多维度的业务数据映射至高维空间,并基于此空间中的样本分布特征进行异常检测。实验验证了该方法在不同异常类型下的有效性,为快速定位和处理异常提供了有力支持。同时,文章还讨论了算法在实际应用中的调整与优化方向,展望了未来在异常检测领域的进一步应用与发展。
广告检索系统的性能长尾影响KPI,间接影响收入,极致优化成本和性能一直是检索端工程团队的重要工作。随着基于SSD分级存储在商业场景规模应用,在部分访盘量高的场景,为控制性能长尾退化,我们尝试引入缓存对标系统PageCache来解决。在引入过程,我们对业界经典的缓存算法,进行了针对性测评,将测评效果与大家分享,诚邀对存储和缓存技术有兴趣的伙伴们一起探讨。
从十几个模块到上千个微服务,百度如何构建业界最复杂的微服务系统?Jarvis平台,十年磨一剑,集服务治理、配置管理、链路追踪于一体,打造云原生控制中心。Jarvis2.0,多运行时架构的先驱,实现微服务治理的全新突破。节省耗时、提升效率,Jarvis2.0在60+产品线中部署4w+实例,节省人力与资源。技术爱好者,点击深入了解,一探究竟!
在深度学习的世界中,数据是一切算法和模型的基础。有效、高效地处理数据,特别是处理高维数组或张量(Tensor),成为了构建模型、处理数据等任务的重要部分。飞桨框架,作为一个前沿的深度学习框架,提供了丰富的 Tensor 索引操作,极大地简化了 Tensor 的操作和处理。本文基于飞桨框架,详细介绍 Tensor 索引的概念、功能、使用场景,并结合具体的代码示例,展示在不同领域模型中索引的实际应用,以及个人的学习心得。